3.378 \(\int \frac {x^{13/2}}{\sqrt {b x^2+c x^4}} \, dx\)

Optimal. Leaf size=179 \[ -\frac {15 b^{11/4} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{77 c^{13/4} \sqrt {b x^2+c x^4}}+\frac {30 b^2 \sqrt {b x^2+c x^4}}{77 c^3 \sqrt {x}}-\frac {18 b x^{3/2} \sqrt {b x^2+c x^4}}{77 c^2}+\frac {2 x^{7/2} \sqrt {b x^2+c x^4}}{11 c} \]

[Out]

-18/77*b*x^(3/2)*(c*x^4+b*x^2)^(1/2)/c^2+2/11*x^(7/2)*(c*x^4+b*x^2)^(1/2)/c+30/77*b^2*(c*x^4+b*x^2)^(1/2)/c^3/
x^(1/2)-15/77*b^(11/4)*x*(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)
))*EllipticF(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1/2))*((c*x^2+b)/(b^(1/2)+x*c^(
1/2))^2)^(1/2)/c^(13/4)/(c*x^4+b*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 179, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2024, 2032, 329, 220} \[ \frac {30 b^2 \sqrt {b x^2+c x^4}}{77 c^3 \sqrt {x}}-\frac {15 b^{11/4} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{77 c^{13/4} \sqrt {b x^2+c x^4}}-\frac {18 b x^{3/2} \sqrt {b x^2+c x^4}}{77 c^2}+\frac {2 x^{7/2} \sqrt {b x^2+c x^4}}{11 c} \]

Antiderivative was successfully verified.

[In]

Int[x^(13/2)/Sqrt[b*x^2 + c*x^4],x]

[Out]

(30*b^2*Sqrt[b*x^2 + c*x^4])/(77*c^3*Sqrt[x]) - (18*b*x^(3/2)*Sqrt[b*x^2 + c*x^4])/(77*c^2) + (2*x^(7/2)*Sqrt[
b*x^2 + c*x^4])/(11*c) - (15*b^(11/4)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*Ellipt
icF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(77*c^(13/4)*Sqrt[b*x^2 + c*x^4])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2024

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n +
 1)*(a*x^j + b*x^n)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^(n - j)*(m + j*p - n + j + 1))/(b*(m + n*p + 1)
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rubi steps

\begin {align*} \int \frac {x^{13/2}}{\sqrt {b x^2+c x^4}} \, dx &=\frac {2 x^{7/2} \sqrt {b x^2+c x^4}}{11 c}-\frac {(9 b) \int \frac {x^{9/2}}{\sqrt {b x^2+c x^4}} \, dx}{11 c}\\ &=-\frac {18 b x^{3/2} \sqrt {b x^2+c x^4}}{77 c^2}+\frac {2 x^{7/2} \sqrt {b x^2+c x^4}}{11 c}+\frac {\left (45 b^2\right ) \int \frac {x^{5/2}}{\sqrt {b x^2+c x^4}} \, dx}{77 c^2}\\ &=\frac {30 b^2 \sqrt {b x^2+c x^4}}{77 c^3 \sqrt {x}}-\frac {18 b x^{3/2} \sqrt {b x^2+c x^4}}{77 c^2}+\frac {2 x^{7/2} \sqrt {b x^2+c x^4}}{11 c}-\frac {\left (15 b^3\right ) \int \frac {\sqrt {x}}{\sqrt {b x^2+c x^4}} \, dx}{77 c^3}\\ &=\frac {30 b^2 \sqrt {b x^2+c x^4}}{77 c^3 \sqrt {x}}-\frac {18 b x^{3/2} \sqrt {b x^2+c x^4}}{77 c^2}+\frac {2 x^{7/2} \sqrt {b x^2+c x^4}}{11 c}-\frac {\left (15 b^3 x \sqrt {b+c x^2}\right ) \int \frac {1}{\sqrt {x} \sqrt {b+c x^2}} \, dx}{77 c^3 \sqrt {b x^2+c x^4}}\\ &=\frac {30 b^2 \sqrt {b x^2+c x^4}}{77 c^3 \sqrt {x}}-\frac {18 b x^{3/2} \sqrt {b x^2+c x^4}}{77 c^2}+\frac {2 x^{7/2} \sqrt {b x^2+c x^4}}{11 c}-\frac {\left (30 b^3 x \sqrt {b+c x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{77 c^3 \sqrt {b x^2+c x^4}}\\ &=\frac {30 b^2 \sqrt {b x^2+c x^4}}{77 c^3 \sqrt {x}}-\frac {18 b x^{3/2} \sqrt {b x^2+c x^4}}{77 c^2}+\frac {2 x^{7/2} \sqrt {b x^2+c x^4}}{11 c}-\frac {15 b^{11/4} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{77 c^{13/4} \sqrt {b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.04, size = 97, normalized size = 0.54 \[ \frac {2 x^{3/2} \left (-15 b^3 \sqrt {\frac {c x^2}{b}+1} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {c x^2}{b}\right )+15 b^3+6 b^2 c x^2-2 b c^2 x^4+7 c^3 x^6\right )}{77 c^3 \sqrt {x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(13/2)/Sqrt[b*x^2 + c*x^4],x]

[Out]

(2*x^(3/2)*(15*b^3 + 6*b^2*c*x^2 - 2*b*c^2*x^4 + 7*c^3*x^6 - 15*b^3*Sqrt[1 + (c*x^2)/b]*Hypergeometric2F1[1/4,
 1/2, 5/4, -((c*x^2)/b)]))/(77*c^3*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

fricas [F]  time = 0.94, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{4} + b x^{2}} x^{\frac {9}{2}}}{c x^{2} + b}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(13/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2)*x^(9/2)/(c*x^2 + b), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{\frac {13}{2}}}{\sqrt {c x^{4} + b x^{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(13/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate(x^(13/2)/sqrt(c*x^4 + b*x^2), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 148, normalized size = 0.83 \[ -\frac {\left (-14 c^{4} x^{7}+4 b \,c^{3} x^{5}-12 b^{2} c^{2} x^{3}-30 b^{3} c x +15 \sqrt {-b c}\, \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, b^{3} \EllipticF \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )\right ) \sqrt {x}}{77 \sqrt {c \,x^{4}+b \,x^{2}}\, c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(13/2)/(c*x^4+b*x^2)^(1/2),x)

[Out]

-1/77/(c*x^4+b*x^2)^(1/2)*x^(1/2)*(-14*c^4*x^7+15*b^3*(-b*c)^(1/2)*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(
1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-1/(-b*c)^(1/2)*c*x)^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)
^(1/2))^(1/2),1/2*2^(1/2))+4*b*c^3*x^5-12*b^2*c^2*x^3-30*b^3*c*x)/c^4

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{\frac {13}{2}}}{\sqrt {c x^{4} + b x^{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(13/2)/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^(13/2)/sqrt(c*x^4 + b*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^{13/2}}{\sqrt {c\,x^4+b\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(13/2)/(b*x^2 + c*x^4)^(1/2),x)

[Out]

int(x^(13/2)/(b*x^2 + c*x^4)^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(13/2)/(c*x**4+b*x**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________